Binomial Queue¶
约 883 个字 91 行代码 7 张图片 预计阅读时间 6 分钟
二项树定义与性质¶
- 度数为0的二项树只包含一个节点
- 度数为k的二项树是由一颗度数为\(k-1\)的二项树直接插到另一颗度数为\(k-1\)的二项树根下,含有k个节点,共\(k+1\)层
- 度数为k的二项树有k个孩子,分别为度数为0,1,...,k-1的二项树
- 度数为k的二项树在第d层有\(C_{k}^{d}\)个节点
二项队列¶
概念¶
二项队列就是有一堆二项树组成,每个二项树满足堆的性质(大顶堆/小顶堆)。
操作¶
FindMin¶
可以用一个指针标记最值。因此时间复杂度可以是\(O(1)\)。如果没有标记,遍历根的话,是\(O(\log(N))\)
Merge¶
两个二项队列的合并就是把度相同的二项树合并。
其实也可以看成是二进制数相加
因此就有三棵树,度分别为3,2,0,由此我们也可以推出合并的时间复杂度是\(O(\log(N))\),因为二进制有\(\log(N)\)位Insert¶
特殊的merge.我们想使用均摊分析法,证明N个连续的Insert可以是\(O(N)\)的时间复杂度
聚合分析法¶
发现
如果我们把二项队列看成一个二进制数...
- n=....0,cost=1
- n=....01,cost=2
- n=....011,cost=3
- n=....0111,cost=4
我们发现,开销实际上就是根据低位连续的1的个数来决定。那么N步插入,每种情况各出现多少次呢?
发现
-
对于n=....0的情况,有一半的插入情况是这样
-
对于n=....01的情况,有\(\frac{1}{2} * \frac{1}{2}=\frac{1}{4}\)
-
...
因此,总开销为\(\frac{n}{2}*1+\frac{n}{4}*2+...=2N\)
均摊下来就是常数时间。
势能法¶
我们不妨思考,哪一步的开销最大?显然是当发生进位,也即我们需要删除树并合并树的情况,不然,直接创造树即可。根据均摊分析的原则,让开销大的步骤尽可能小下来,我们作如下规定:
前提
-
\(\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})\)
-
\(\Phi(D_i)=\)number of trees after the ith insertion
如果某步Insertion\(c_i\)的cost为k,那么必然是除了一次创建以外,合并了k-1次,也即树的个数减少了\(k-2\)(第一步合并后\(\Phi(D_i)=\Phi(D_{i-1})\))
因此\(\hat{c_i}=c_i+\Phi(D_i)-\Phi(D_{i-1})=k-(k-2)=2\)
\(\therefore T_{\text{amortized}}=\frac{2N}{N}=2\)
DeleteMin¶
以下步骤:
-
FindMin:\(O(\log(N))\)
-
remove(移除最小值作为根的树):\(O(1)\)
-
移除根,原来的树被拆分:\(O(\log(N))\)
-
merge:\(O(\log(N))\)
code¶
数据结构定义¶
typedef int ElementType
typedef struct BinNode *Position;
typedef struct Collection *BinQueue;
typedef struct BinNode *BinTree; /* missing from p.176 */
struct BinNode
{
ElementType Element;
Position LeftChild;
Position NextSibling;
} ;
struct Collection
{
int CurrentSize; /* total number of nodes */
BinTree TheTrees[ MaxTrees ];
} ;
Merge¶
BinTree CombineTrees( BinTree T1, BinTree T2 )
{ /* merge equal-sized T1 and T2 */
if ( T1->Element > T2->Element )
/* attach the larger one to the smaller one */
return CombineTrees( T2, T1 );
/* insert T2 to the front of the children list of T1 */
T2->NextSibling = T1->LeftChild;
T1->LeftChild = T2;
return T1;
}
BinQueue Merge( BinQueue H1, BinQueue H2 )
{ BinTree T1, T2, Carry = NULL;
int i, j;
if ( H1->CurrentSize + H2-> CurrentSize > Capacity ) ErrorMessage();
H1->CurrentSize += H2-> CurrentSize;
for ( i=0, j=1; j<= H1->CurrentSize; i++, j*=2 ) {
T1 = H1->TheTrees[i]; T2 = H2->TheTrees[i]; /*current trees */
switch( 4*!!Carry + 2*!!T2 + !!T1 ) {
case 0: /* 000 */
case 1: /* 001 */ break;
case 2: /* 010 */ H1->TheTrees[i] = T2; H2->TheTrees[i] = NULL; break;
case 4: /* 100 */ H1->TheTrees[i] = Carry; Carry = NULL; break;
case 3: /* 011 */ Carry = CombineTrees( T1, T2 );
H1->TheTrees[i] = H2->TheTrees[i] = NULL; break;
case 5: /* 101 */ Carry = CombineTrees( T1, Carry );
H1->TheTrees[i] = NULL; break;
case 6: /* 110 */ Carry = CombineTrees( T2, Carry );
H2->TheTrees[i] = NULL; break;
case 7: /* 111 */ H1->TheTrees[i] = Carry;
Carry = CombineTrees( T1, T2 );
H2->TheTrees[i] = NULL; break;
} /* end switch */
} /* end for-loop */
return H1;
}
DeleteMin¶
ElementType DeleteMin( BinQueue H )
{ BinQueue DeletedQueue;
Position DeletedTree, OldRoot;
ElementType MinItem = Infinity; /* the minimum item to be returned */
int i, j, MinTree; /* MinTree is the index of the tree with the minimum item */
if ( IsEmpty( H ) ) { PrintErrorMessage(); return –Infinity; }
for ( i = 0; i < MaxTrees; i++) { /* Step 1: find the minimum item */
if( H->TheTrees[i] && H->TheTrees[i]->Element < MinItem ) {
MinItem = H->TheTrees[i]->Element; MinTree = i; } /* end if */
} /* end for-i-loop */
DeletedTree = H->TheTrees[ MinTree ];
H->TheTrees[ MinTree ] = NULL; /* Step 2: remove the MinTree from H => H’ */
OldRoot = DeletedTree; /* Step 3.1: remove the root */
DeletedTree = DeletedTree->LeftChild; free(OldRoot);
DeletedQueue = Initialize(); /* Step 3.2: create H” */
DeletedQueue->CurrentSize = ( 1<<MinTree ) – 1; /* 2MinTree – 1 */
for ( j = MinTree – 1; j >= 0; j – – ) {
DeletedQueue->TheTrees[j] = DeletedTree;
DeletedTree = DeletedTree->NextSibling;
DeletedQueue->TheTrees[j]->NextSibling = NULL;
} /* end for-j-loop */
H->CurrentSize – = DeletedQueue->CurrentSize + 1;
H = Merge( H, DeletedQueue ); /* Step 4: merge H’ and H” */
return MinItem;
}
例题¶
例题