浙江大学 2020-2021 学年 秋冬 学期

《离散数学》课程期末考试试卷

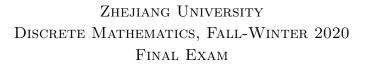
课程号: <u>21120401</u> 开课学院: <u>计算机学院</u>
考试试卷: ☑ A卷 □ B卷
考试形式: ☑ 闭卷 □ 开卷,允许带 _____入场
考试日期: <u>2021</u> 年<u>1</u>月<u>26</u>日,考试时间: <u>120</u>分钟

诚信考试,沉着应考,杜绝违纪

考生姓名__

学号______所属院系_

题序	1	2	3	4	5	6	7	总分
得分								
评卷人								



- 1. (20 pts) Determine whether the following statements are true or false. If it is true fill a $\sqrt{}$ otherwise a \times in the bracket before the statement.
 - (a) () Let A, B and C be arbitrary sets. If $A C \subseteq B C$, then $A \cup C \subseteq B \cup C$.
 - (b) () Let A, B be two sets. If $\rho(A) \subseteq \rho(B)$, then $A \subseteq B$, where $\rho(X)$ is the power set of X.
 - (c) () Let P(x) be a predicate, then $\forall x P(x) \to Q \Leftrightarrow \forall x (P(x) \to Q)$, where Q is independent of x.
 - (d) () The poset ($\{1, 2, 4, 8, 12, 16, 32\}$, |) is a lattice(格), where $x \mid y$ denote x divides y.
 - (e) () Let (S, \preceq) be a partially ordered set, if there is unique maximal element a of S, then a is the greatest element of S.
 - (f) () If the following assignments 000,011 and 110 make the propositional formula φ false, then φ can be converted in full conjunctive normal form $\Pi(0,3,6)$.
 - (g) () The set of all functions from \mathbb{N} to $\{0,1\}$ is countably infinite.
 - (h) () If there are 800 people in a room then at least 3 of them are guaranteed to have the same birthday.
 - (i) () All simple complete graphs with at least 3 vertices are Euler graphs.
 - (j) () In a binary tree with n vertices and l leaves, then $2 \cdot l \leq n+1$.

2. (12 pts) ON MATHEMATICAL LOGIC

Construct arguments to prove that the following reasoning is valid.

HYPOTHESIS: $\neg p \lor q \to r, s \lor \neg q, \neg t, p \to t, \neg p \land r \to \neg s$ Conclusion: $\neg q$

3. (10 pts) On Infinite sets

Let A be an arbitrary infinite set, B be a countably infinite set, and $A \cap B = \emptyset$. Prove that sets A and $A \cup B$ have the same cardinality.

4. (12 pts) ON GRAPH

Let G be a simple graph with n vertices and k connected components.

- (a) What is the minimum possible number of edges of G?
- (b) What is the maximum possible number of edges of G?

5. (24 pts) ON SET AND RELATION

Let A be a set with n elements and $B = \{a, b, c\}$.

- (a) How many different symmetric relations on A?
- (b) How many different anti-symmetric relations on A?
- (c) How many both symmetric and antisymmetric binary relations on A are there?
- (d) How many different equivalence relations are there on B?
- (e) How many different partial order relations are there on B?
- (f) Is there a binary relation R on B such that R is both an equivalence relation and a partial order? Either give an example, or show that no such R exist.

Justify your answer, but you don't need to give a formal proof.

6. (10 pts) ON TREE

Suppose that T is a tree of 9 vertices with a vertex of 6 degrees.

- (a) What degree sequences can T have?
- (b) Draw all non-isomorphic trees of 9 vertices with a vertex of 6 degrees.

7. (12 pts) ON COUNTING

Let b_n denote the number of binary strings of length n that contain 101 as a substring and $B(x) = \sum_{n=1}^{\infty} b_n x^n$.

- (a) Determine the value of b_1, b_2, b_3, b_4, b_5 .
- (b) Derive an explicit closed-form expression for B(x).

HINT: You might want to set up recurrence relation for the appropriate sequences.